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Chapter 1

Introduction

Quantum computation and quantum information is a quite recent and very
rapidly developing field of research. Effectively this field is based on funda-
mental ideas from the following fields:

1. quantum mechanics; 2. computer science;

3. information theory; 4. cryptography.

Accordingly quantum computation and quantum information is an interdis-
ciplinary field with ground breaking developments in the experimental and
theoretical side. It is based on profound experimental and theoretical progress
in quantum physics (2012 Physics Nobel price winners: S. Haroche and D.
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1.1. HISTORY CHAPTER 1. INTRODUCTION

Wineland: made tremendous advances in our understanding of quantum en-
tanglement, with beautiful experiments to show how atomic systems can be
manipulated to exhibit the most extraordinary coherence properties).

Quantum computation requires some knowledge of the working of a classi-
cal computer. But this will not be discussed here.

1.1 History

Here we mention only the most important dates in its history. The following
table presents some highlights. Some of these will be discussed in more detail
later.

1920 - 1930 quantum mechanics emerged in its present form.

1936 Alan Turing - existence of a Universal Turing Machine.

1936 - 1939
Church-Turing thesis: A function is algorithmically com-
putable if and only if it is computable by a Turing machine.

1947 transistor is developed by Bardeen, Brattain, and Shockley.
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1948
C. Shannon: foundations of a mathematical theory of infor-
mation and communication.

≈1970

computational complexity theory: efficient algorithms run
in polynomial time (with the size of the problem); strength-
ened version of the Church-Turing thesis: Any algorithmic
process can be simulated efficiently using a Turing machine.

≥1970
experimental control of single quantum systems (atoms,
electrons), in particular designer arrays of atoms.

≈1975 primality test of integers by a randomized algorithm.

≈1976
R. Rivest, A. Shamir, L. Adleman: public key crypto system
- RSA cryptosystem.

1982
Wootters and Zurek, Dieks: no-cloning theorem for quan-
tum states.

1984
CH. Bennet, G. Brassard: BB84 protocol - quantum key ex-
change, security of communication based on quantum me-
chanics - quantum cryptography, 3.
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1985
R. Feynman: suggestion of quantum mechanical computers,
11.

1985

D. Deutsch: Universal Quantum Computer, i.e., a computa-
tional device based on the principles of quantum mechanics
which is capable of efficiently simulating an arbitrary phys-
ical system, 8, 9.

1993
G. Brassard C. Crépeau R. Jozsa A. Peres Bennett, C.H. and
W.K. Wootters: First suggestion of teleportation with qubits,
7.

1994
L. Vaidman: continuous variable teleportation suggested,
14.

1994
P. Shor: algorithm for finding prime factors of an integer on
a quantum computer (QC), 13.

1995
L. Grover: algorithm for search through unstructured search
space on a QC, 12.
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1996
R. Calderbank, P. Shor, A. Steane: quntum error-correcting
codes - CSS codes, 6.

1997
D. Bouwmeester , JW Pan, K. Mattle, M. Eible, H. Wein-
furter, A. Zeilinger: Experimental quantum teleportation
with photon polarization, 4.

1998
S.L. Braunstein and H.J. Kimble: Teleportation of continu-
ous quantum variables, 5.

2004
world’s first bank transfer using quantum key distribution
in Vienna and several other quantum key distribution net-
works were started (USA, Switzerland).

1.2 Overview
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Chapter 2

Quantum Mechanics in Hilbert space

In this chapter we recall briefly the basics of quantum mechanics in a form and
in a notation used later.

2.1 Hilbert spaces

In the followingH denotes a complex separable Hilbert space. For most parts
of this lecture H will actually be finite dimensional, i.e., isomorphic to the
Hilbert space of n-tuples of complex numbers, for n = 2,3, . . .:

H ' Cn.
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2.1. HILBERT SPACES CHAPTER 2. HILBERT SPACE QM

A Hilbert space is a complete normed space whose norm is defined in terms
of an inner product according to the relation

‖ψ‖ =
√
〈ψ| ψ〉, ψ ∈ H.

Here 〈·| ·〉 denotes the inner product on H which in our convention is anti-
linear in the first argument and linear in the second. Separability means that
there is a complete othonormal system in H, i.e., a sequence of vectors ej,
j ∈N, with

〈
ej
∣∣ ei
〉
= δji such that for every ψ ∈ H one has

ψ =
∞

∑
j=0

〈
ej
∣∣ ψ
〉

ej . (2.1)

A unit vector e ∈ H defines a one dimensional subspace

He = Ce ,

and the projection operator Pe onto this subspace is defined by

Peψ = 〈e| ψ〉 e, ψ ∈ H .

Following physicists tradition and using Dirac’s bra and ket notation, this pro-
jection can be written as

Pe = |e〉〈e| . (2.2)

E. Brüning 14



CHAPTER 2. HILBERT SPACE QM 2.2. STATES AND OBSERVABLES

A linear operator A on H is a linear map D(A)→H where D(A) is a dense
linear subspace ofH. Such a linear operator has a unique adjoint operator A∗

defined by

D(A∗) = {φ ∈ H : ∃C < ∞, | 〈φ| Aψ〉 | ≤ C‖ψ‖ ∀ψ ∈ D(A)} ,
〈A∗φ| ψ〉 = 〈φ| Aψ〉 , ∀ψ ∈ D(A), ∀φ ∈ D(A∗) .

(2.3)

A linear operator A is bounded iff D(A) =H and ‖Aψ‖ ≤ const‖ψ‖ for all ψ∈
H and then the norm of A is defined by ‖A‖ = sup{‖Aψ‖ : ψ ∈ H,‖ψ‖ ≤ 1}.

A bounded linear operator A is isometric iff ‖Aψ‖ = ‖ψ‖ for all ψ ∈ H. A
bounded linear operator A is unitary iff A is isometric and onto H. A unitary
operator A onH is characterized by the identities

A∗A = AA∗ = I

where I denotes the identity operator onH.
Note that for a finite dimensional Hilbert space all linear operators are bounded.

2.2 States and Observables

The observables a of a quantum mechanical system Σ are realized as self-
adjoint operators A in a complex separable Hilbert space H. Recall that a

E. Brüning 15



2.2. STATES AND OBSERVABLES CHAPTER 2. HILBERT SPACE QM

linear operator A is called self-adjoint iff it equals its adjoint: A = A∗ (note that
this equality includes the equality of the domains of definition, i.e., D(A) =
D(A∗) as defined above).

Many observables have to be realized by unbounded self-adjoint operators,
for instance the momentum operator P or the energy operator or Hamiltonian
H.

Every self-adjoint operator A on a complex Hilbert space H has a unique
spectral representation, i.e., there is a unique spectral family Eλ,λ ∈R, on H
(the Eλ are orthogonal projections onH) such that

D(A) =

{
x ∈ H :

∫
R

λ2d‖Eλx‖2 < ∞
}

, Ax =
∫

R

λdEλx, x ∈ D(A) . (2.4)

The spectral representation of a self-adjoint operator A allows to calculate
many functions f (A) of A according to the formula

D( f (A)) =

{
x ∈ H :

∫
R

| f (λ)|2d‖Eλx‖2 < ∞
}

,

f (A)x =
∫

R

f (λ)dEλx, x ∈ D( f (A)) .
(2.5)

whenever the above integrals exist. This is certainly the case for all bounded
continuous functions f on R. If we do this for all the self-adjoint operators A

E. Brüning 16



CHAPTER 2. HILBERT SPACE QM 2.2. STATES AND OBSERVABLES

which correspondent to all the observables a of a system Σ we can form the
C∗-algebra O =O(Σ)of all observables of Σ.

Recall that the states of a quantum mechanical system Σ are realized as
normalized positive linear functionals on its C∗-algebra of observables O, i.e.,
linear functions φ :O→ C satisfying

φ(A∗A) ≥ 0, A ∈ O, φ(I) = 1 .

Under certain technical assumptions such functionals are of the form

φ(A) = Tr (WA), A ∈ O (2.6)

where W is a density matrix on H. A bounded linear operator W on H is a
density matrix iff a) W ≥ 0, i.e., 〈x|Wx〉 ≥ 0 for all x ∈ H and
b) W is of trace class and of trace 1, i.e., ∑∞

j=0
〈
ej
∣∣Wej

〉
= 1 for some (and then

for any) orthonormal basis ej ofH.

Every density matrix W inH has the following spectral representation: There
is an orthonormal basis ej, j ∈N, of H and a sequence of numbers σj ≥ 0 with
∑∞

j=0 σj = 1 such that

W =
∞

∑
j=0

σjPej (2.7)

E. Brüning 17



2.3. TIME EVOLUTION CHAPTER 2. HILBERT SPACE QM

where Pej denotes the orthogonal projector onto the subspace spanned by the
vector ej as given in (2.2). Note that some of the eigen-values σj of W can be 0.
For such a W Formula (2.6) takes the form

φ(A) =
∞

∑
j=0

σj
〈
ej
∣∣ Aej

〉
(2.8)

2.3 Time evolution

As in classical mechanics the time evolution of a quantum system is generated
by the Hamiltonian H according to the Schrödinger equation

ih̄
d
dt

ψ(t) = Hψ(t) (2.9)

for a wave function ψ : R→ H. Since the Hamiltonian H is a self-adjoint
operator it generates a unitary group

U(t) = e−i t
h̄ H, t ∈R (2.10)

and the solution of Schrödinger’s equation for the initial condition is ψ(0) = ψ

is
ψ(t) = U(t)ψ.

E. Brüning 18
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In our context the Hamiltonian is always time independent and usually we
work in units where h̄ = Planck’s constant

2π = 1. Note that

U(t)∗ = U(−t), U(t1)U(t2) = U(t1 + t2), U(0) = I

holds.

2.4 Measurements

2.4.1 General description of the measuring process

All the information which we have about a physical system is obtained from
observations and measurements. Observations consist in bringing the system
under examination in contact with some other system, the observer, or some
measuring device M, and observing the reaction of the system on the observer.

Two important features of the measuring process:
1. Back-effect of the measuring device on the system: The measuring device M
must interact somehow with the system. But an interaction always acts both
ways, hence M also acts on the system, producing an effect on the system with
no particularly desirable consequences. This back-effect on the system seems
to be the cause of the difficulty in the interpretation of quantum mechanics.

E. Brüning 19



2.4. MEASUREMENTS CHAPTER 2. HILBERT SPACE QM

2. Appearance of the “conscious observer": If a measurement is to be useful
there must be a further observation on M, namely “reading the scale". Such
further observations may be made at a later time by examining a permanent
record of some sort, but in any case, these further observations must enter
the consciousness of a scientific observer. (Schrödinger: Knowledge which
nobody has, is no knowledge!)

2.4.2 Born’s rule

Suppose we measure an observable a of a quantum system in a state with the
density matrix W. If this observable is represented by the self-adjoint operator
A with the spectral representation (2.4) then the probability pA

W(a,b) that the
measured value lies in the interval (a,b) is

pA
W(a,b) = Tr (AWE(a,b)), E(a,b) =

∫ b

a
dEλ . (2.11)

If we take the form (2.7) for W into account this probability equals

pA
W(a,b) =

∞

∑
j=0

σj
〈
ej
∣∣ AE(a,b)ej

〉
.

E. Brüning 20
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In particular, if the observable A has a purely discrete spectrum, i.e., A =

∑i aiPi and the system is in the pure state given by the unit vector ψ ∈ H, then
this probability is

pA
W(a,b) = ∑

ai∈(a,b)

ai 〈ψ| Piψ〉 . (2.12)

2.5 Measurements

Born’s rule gives the probability for a specific measurement outcome. But
often in quantum mechanics one also needs to know the post measurement
state of the system at which the measurement has been performed. We recall
here the basic rules which we are going to use later. We restrict ourselves to
the case of a finite dimensional state Hilbert spaceH.

For an orthonormal basis
{

ej
}

of H denote by [ej] = Pej the orthogonal pro-
jector onto the one dimensional subspace spanned by the vector ej. Typically
these basis vectors are the eigen-vectors of some self-adjoint operator inH, i.e.,
of an observable. According to (2.12) the probability for the outcome j of the
measurement is

∥∥[ej]ψ
∥∥2

=
〈
ψ
∣∣ [ej]ψ

〉
= |
〈
ej
∣∣ ψ
〉
|2 if our system is in the pure

E. Brüning 21
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state ψ ∈ H and the state of the system after the measurement is

[ej]ψ〈
ψ
∣∣ [ej]ψ

〉 = 〈
ej
∣∣ ψ
〉〈

ψ
∣∣ [ej]ψ

〉ej . (2.13)

If our system is in a general state with density matrix W, then the post mea-
surement state is

[ej]W[ej]

Tr([ej]W[ej])
. (2.14)

2.6 Heisenberg’s Uncertainty Principle

This principle states that in a quantum system only one property of a pair of
conjugate properties can be known with certainty. Recall that conjugate proper-
ties are represented by self-adjoint operators which do not commute. Heisen-
berg formulated this principle originally for the position and momentum of a
particle. The operators of position Q and momentum P satisfy the commuta-
tion relation

[Q, P] = QP− PQ ⊂ iI (2.15)
where I denotes as usual the identity operator and where the symbol ⊂ ex-
presses the fact that the above identity holds on a dense subspace of the Hilbert

E. Brüning 22



CHAPTER 2. HILBERT SPACE QM 2.6. HEISENBERG’S UNCERTAINTY PRINCIPLE

spaceH, not on all ofH, since (2.15) involves unbounded operators.
The mean values or expected value of an observable A in a state W is

E(A,W) = Tr (AW) = 〈A〉W.

Here and in the following we assume that the operator products are of trace
class.

The uncertainty of an observable A in a state W then is defined as

∆W(A) =
√

Tr(A2W)− 〈A〉2W.

Now using the observation that

(A, B)→ Tr(A∗BW)

defines a positive semi-definite sesquiliear form for which the Cauchy-Schwarz
inequality holds one shows Heisenberg uncertainty principle in general form

1
2
|Tr([A, B]W)| ≤ ∆W(A)∆W(B), (2.16)

hence in the case of position and momentum one has for a pure state ψ

1
2
≤ ∆ψ(Q)∆ψ(P).
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2.7 Composite systems and entanglement

Suppose that a quantum system Σ is composed of two subsystems Σi with
respective Hilbert spaces Hi, , i = 1,2. Then the Hilbert H of Σ is the (Hilbert)
tensor product of the spacesH1 andH2:

H =H1⊗H2

Note that in this formula the symbol⊗ denotes the completion of the algebraic
tensor product of the vector spaces Hi. If ej ( fk) is an orthonormal basis of H1

(H2) then

H =H1⊗H2 =

{
∞

∑
j,k=1

cjkej ⊗ fk : cjk ∈ C,
∞

∑
j,k=1
|cjk|2 < ∞

}
, (2.17)

i.e.,H1⊗H2 is the Hilbert space with ej⊗ fk, j,k ∈N, as an orthonormal basis.
Thus elements ψ ∈H are given by double series according to (2.17). However,
according to a much used result, each element ψ ∈H has also a representation
by a single series.
Schmidt decomposition: For every ψ ∈ H there are non-negative numbers pn
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and orthonormal bases e′n ofH1 respectively f ′n ofH2 such that

ψ =
∞

∑
n=1

pne′n ⊗ f ′n,
∞

∑
n=1

p2
n = ‖ψ‖

2 . (2.18)

States ψ ∈ H are called separable iff there are ψ1 ∈ H1 and ψ2 ∈ H2 such that

ψ = ψ1⊗ ψ2.

States ψ ∈ H are called inseparable or entangled iff they are not separable.
Entanglement of two quantum systems occurs when these systems (for in-

stance photons, electrons, molecules) interact physically and then become sep-
arated; the type of interaction is such that each resulting member of a pair
is properly described by the same quantum mechanical description (state),
which is indefinite in terms of important factors such as position, momentum,
spin, polarization, etc.

The concept of entanglement was suggested by E. Schrödinger in a reply
to the EPR paradox, a thought experiment by which Einstein, Podolsky and
Rosen claimed to prove that the quantum-mechanical description of physical
reality given by wave functions is not complete. Schrödinger stated:

I would not call [entanglement] one but rather the characteristic trait

E. Brüning 25



2.7. COMPOSITE SYSTEMS AND ENTANGLEMENT CHAPTER 2. HILBERT SPACE QM

of quantum mechanics, the one that enforces its entire departure from
classical lines of thought.

Quantum systems can become entangled through various types of interac-
tions (see section on methods below). If entangled, one object cannot be fully
described without considering the other(s). They remain in a quantum super-
position and share a single quantum state until a measurement is made.

For example entanglement occurs when subatomic particles decay into other
particles. These decay events obey the various conservation laws, and as a re-
sult, pairs of particles can be generated so that they are in some specific quan-
tum states. Thus, entanglement is an experimentally verified and accepted
property of nature. Non-locality and hidden variables are two proposed mech-
anisms that enable the effects of entanglement. And, as we will learn later,
entanglement is a (physical) resource, for instance for quantum teleportation
and to superdense coding.

2.7.1 Measurements on entangled states

We conclude this chapter with an explicit demonstration of the amazing con-
sequences of entanglement. Suppose that a two qubit system is in the (gen-
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CHAPTER 2. HILBERT SPACE QM 2.7. COMPOSITE SYSTEMS AND ENTANGLEMENT

eral) state

ψ = ∑
i,j=0,1

αij|ij〉12, |ij〉12 = |i〉1⊗ |j〉2, ‖ψ‖2 = ∑
i,j=0,1

|αij|2 = 1 (2.19)

where the subscripts 1,2 refer to qubit 1 and qubit 2. On such a two qubit
system various measurements can be performed.

1. Before any measurement the state of this system is uncertain.

2. After the measurement the state of the system is certain, it is |00〉12, |01〉12,
|10〉12, |11〉12, with probability |α00|2, |α01|2, |α10|2, or |α11|2.

3. What conclusions can be drawn when we observe only the first (or only
the second) qubit? We expect the system to be left in an uncertain state, be-
cause we did not measure the second qubit that can still be in a continuum
of states.

4. The first qubit can be in the state

• |0〉1 with probability |α00|2 + |α01|2, or

• |1〉1 with probability |α10|2 + |α11|2.
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2.7. COMPOSITE SYSTEMS AND ENTANGLEMENT CHAPTER 2. HILBERT SPACE QM

5. Denote by
∣∣ψI

0

〉
(
∣∣ψI

1

〉
) the post-measurement state when we measure the

first qubit and find it to be in state |0〉1 (|1〉1). According to (2.13) these
states are∣∣ψI

0
〉
=

α00|00〉12 + α01|01〉12√
|α00|2 + |α01|2

,
∣∣ψI

1
〉
=

α10|10〉12 + α11|11〉12√
|α10|2 + |α11|2

(2.20)

6. Now consider the case of fully entangled states, for instance the Bell state
(see (5.5)) |φ+〉12 which is the special case of (2.19) with α00 = α11 = 1/

√
2

and α01 = α10 = 0, i.e.,

ψ =
1√
2
(|0012〉+ |11〉12) =

∣∣φ+
〉

12 .

When in this Bell state we measure the first qubit we get the post measure-
ment states ∣∣ψI

0
〉
= |00〉12,

∣∣ψI
1
〉
= |11〉12.

7. When in this Bell state we measure the second qubit we get in a similar way
the post measurement states∣∣ψI

0
〉
= |00〉12,

∣∣ψI
1
〉
= |11〉12.
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Important conclusions:

1. The two measurements mentioned above are correlated; once we measure
the first qubit we get the same result as when we measure the second qubit.

2. This result is quite astonishing since the two qubits need not be physically
constrained to be at the same location (they could be far apart) and yet,
because of the strong coupling between them, measurement on the first
qubit allow us to determine the state of the second.

3. This effect is known since the early days of quantum mechanics, and in
particular A. Einstein was quite unhappy with this spooky action at a dis-
tance.
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Chapter 3

Qubits and Quantum Circuits

In our lecture we assume that you have some background in classical comput-
ers. In the 1930s C. Shannon studied switching circuits and observed that one
could apply the rules of Boole’s algebra in this setting and he introduced the
concept switching algebra as a way to analyze and design circuits by algebraic
means in terms of logic gates.

Boolean algebra deals with the values 0 and 1 which can be thought of as
two integers, or as the truth values false and true respectively. They are called
bits or binary digits in contrast to the decimal digits 0,1, . . . ,9.

A logic gate is a device implementing a Boolean function, i.e., it performs
a logical operation on one or more logical inputs and produces a single logic
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output. Such gates are primarily implemented using diodes or transistors as
electronic switches. Logic gates can be put together to form compound logic
gates or logic circuits, for instance in a present day computer.

In a classical computer the only reversible logic gate is the NOT gate. An n-
bit datum is a string of bits x1, x2, . . . , xn of length n. They are stored in an n-bit
register. The set of n-bit data is the space {0,1}n which consists of 2n strings of
0’s and 1’s. Thus we can formulate

An n-bit reversible gate is a bijective mapping f from the set {0,1}n

onto itself.

3.1 Bits and Qubits

As a bit is the basic unit of classical computation and classical information a
qubit or quantum bit is the basic unit of quantum computing and quantum
information, realized as a two-state quantum mechanical system. The two
states in which a qubit may be measured are called basis states (or vectors)
and traditionally are denoted as |0〉 and |1〉 (computational basis states).

The process of quantization in this context, i.e., the transition from bits to
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qubits, means the following:

0−→ |0〉 =
(

1
0

)
∈ C2, 1−→ |1〉 =

(
0
1

)
∈ C2, (3.1)

The decisive difference is that a bit must be either 0 or 1 a qubit can be either
|0〉 or |1〉 or a combination

|ψ〉 = α|0〉+ β|1〉, α, β ∈ C, |α|2 + |β|2 = 1 (3.2)

of both, as a consequence of the superposition principle of quantum mechan-
ics. Accordingly a qubit is a unit vector in a Hilbert space which is isomorphic
to C2.

Here we use Dirac’s bra and ket notation; thus we also write

|ψ〉 =
(

α

β

)
, 〈ψ| = (α∗, β∗) = α∗〈0|+ β∗〈1|

and for
∣∣ψj
〉
= αj|0〉+ β j|1〉

〈ψ1| ψ2〉 = α∗1α2 + β∗1β2, |ψ1〉〈ψ2| =
(

α1α∗2 α1β∗2
α2α∗2 α2β∗2

)
, Tr(|ψ1〉〈ψ2|) = 〈ψ2| ψ1〉 .

E. Brüning 33



3.1. BITS AND QUBITS CHAPTER 3. QUBITS AND QUANTUM CIRCUITS

Note that any two-level quantum system can be used as a qubit. Here is a
list of some of the physical implementations of qubits:

Physical
system

system property |0〉 |1〉

photon polarization
of light

horizontal vertical

coherent state
of light

squeezed light amplitude-
squeezed

phase-
squeezed

electrons electronic spin spin up spin down

nucleus nuclear spin
addressed
through NMR

spin up spin down

optical lattices atomic spin spin up spin down
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Josephson
junction

superconducting
charge

uncharged
supercon-
ducting
island, Q = 0

charged su-
perconduct-
ing island,
Q = 2e, one
extra Cooper
pair

singly charged
quantum dot
pair

electron
localization

electron on
left dot

electron on
right dot

As we know the Hilbert space of a composite system is the tensor product of
the Hilbert spaces of its component. Accordingly the Hilbert space of a two
qubit system is a space isomorphic to C2⊗C2. The basis vectors of this space
are

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉.
Usually one writes for i, j ∈ {0,1}

|i, j〉 = |i〉 ⊗ |j〉 . (3.3)
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Recall that composite quantum systems can be entangled. In particular two
qubits can be entangled (in contrast to bits). An example of a state for two
entangled qubits is

1√
2
(|00〉+ |11〉).

Such a state is an equal superposition since the probabilities for measuring
either |00〉 or |11〉 are equal, namely 1/2.

Suppose now that the two entangled qubits are (spatially) separated, one to
a location A, the other to a distant location B. If now a measurement of the one
qubit is made in A and the result |0〉 is found (or with equal probabilty |1〉 ) a
subsequent measurement of the other qubit at B will give the result |0〉 since
|00〉 is the only state where the qubit in A is |0〉 (or the result |1〉 since |11〉 is
the only state where the qubit in B is |1〉).

This observation about entangled qubits is the core of the quantum telepor-
tation protocol (see later). Entanglement is also the basis of quantum compu-
tation and quantum information in general.
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3.2 Quantum gates

There are two basic operations on pure qubit states.

• A quantum logic gate operates on a qubit |ψ〉 and produces another qubit
|ψ〉′. Mathematically this is realized by a unitary transformation of the
state space.

• Another operation on qubits is a standard basis measurement. The result
of such a measurement on (3.2) will be either |0〉 with probability |α|2 or
|1〉 with probability |β|2.

Quantum logic gates are reversible, unlike many classical logic gates. How-
ever classical computing can be done using only reversible gates, since it is
known that the reversible Toffoli gate (or CCNOT gate) can implement all
Boolean functions. This controlled-controlled-not gate has a direct quantum
equivalent, hence quantum circuits which are built out of quantum gates can
perform all operations performed by classical logic circuits.

As indicated above quantum gates are represented by unitary matrices on
the corresponding Hilbert space. The Hilbert space for one qubit is C2, as the
quantized version of the one bit space {0,1}. More generally the quantized
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version of the classical n-bit space {0,1}n is the space

Hnq = C{0,1}n
= C2n

(3.4)

of all functions on {0,1}n with values in the complex numbers C. Elements of
this space are called n-qubits and are written as |x1, x2, · · · , xn〉when x1, x2, · · · , xn

is a classical n-bit string. Thus |x1, x2, · · · , xn〉 is the function which maps the
classical bit x1, x2, · · · , xn to 1 and all other n-bits to 0. These are 2n special
n-qubits, called computational basis states.

Accordingly an n-qubit (reversible) quantum gate is a unitary mapping on

Hnq = C2n
.

There are a number basic quantum gates which are commonly used and
which we describe now:

3.2.1 Hadamard gate H

This gate acts on a single qubit and maps the basis state |0〉 to the state 1√
2
(|0〉+

|1〉) and the basis state |1〉 1√
2
(|0〉 − |1〉); hence the Hadamard gate is repre-

sented by the Hadamard matrix
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H =
1√
2

[
1 1
1 −1

]
(3.5)

H

circuit representation

3.2.2 Pauli-X gate

This gate also acts on a single qubit and is the quantum equivalent of the NOT
gate. Its action is |0〉 −→ |1〉 and |1〉 −→ |0〉; hence its matrix representation is
the Pauli X matrix:

X = σx =

[
0 1
1 0

]
(3.6)

3.2.3 Pauli-Y gate

Its action is |0〉 −→ i|1〉 and |1〉 −→ −i|0〉; hence its matrix representation is
the Pauli Y matrix:

Y = σy =

[
0 −i
i 0

]
(3.7)
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3.2.4 Pauli-Z gate

Its action is |0〉 −→ |0〉 and |1〉 −→−|1〉; hence its matrix representation is the
Pauli Z matrix:

Z = σz =

[
1 0
0 −1

]
(3.8)

Note that the matrices I2, X,Y, Z are a basis in the space M2(C) of 2× 2 matrices
with complex entries. I2 denotes the 2× 2 unit matrix.

3.2.5 Phase shift gates

These gates leave the basis state |0〉 fixed while the basis state |1〉 is mapped
to eiθ|1〉. Hence the probability of measuring |0〉 or |1〉 is unchanged after an
application of this gate. Its matrix representation is[

1 0
0 eiθ

]
θ phase shift (3.9)

3.2.6 Swap gate

This gate swaps two qubits; hence its matrix representation is
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SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.10)

×

×
circuit representation

3.2.7 Controlled gates

These are gates which operate on two or more qubits and where one (or more)
qubits act as a control. The controlled NOT gate or CNOT operates on two
qubits and it performs the NOT operation on the second qubit only when the
first qubit is |1〉, otherwise the second qubit is left unchanged. The matrix and
circuit representations are

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.11)

•

CNOT circuit
As a 2 qubit gate the CNOT gate acts on two incoming states and produces a
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two state output:

|x〉 • |x〉

|y〉 |x⊕ y〉

where ⊕ denotes addition of bits, i.e., addition modulo 2.

A straightforward generalization of the CNOT gate is the controlled-U gate.
Here the first qubit serves as a control in the following way (recall (3.3)):

|00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |1〉U|0〉 = |1〉(x00|0〉+ x10|1〉)
|11〉 −→ |1〉U|1〉 = |1〉(x01|0〉+ x11|1〉)

.

Accordingly its matrix and circuit representations are
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C(U) =


1 0 0 0
0 1 0 0
0 0 x00 x01

0 0 x10 x11

 (3.12)

•

U

controlled -U gate
The circuit representation on two incoming states |x〉, |y〉 thus is

|x〉 • |x〉

|y〉 U Ux|y〉

The CNOT gate is the special case Ux = X.

3.2.8 Toffoli gate

Recall that the Toffoli or CCNOT gate is universal for classical computation. It
is a 3-bit gate. The quantum Toffoli gate is the same but is defined for 3 qubits.
It is the gate which maps |x1, x2, x3〉 to |x1, x2, x3 + x1x2〉. Thus, if the first two
qubits are in the state |1〉 it applies the Pauli-X gate to the third qubit. In all
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other conditions it does nothing. Accordingly its matrix and circuit represen-
tations are

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(3.13)

•

•

CCNOT gate

3.2.9 Fredkin gate

As the Toffoli gate the Fredkin or CSWAP gate is universal for classical com-
putation. Its quantum analogue acts on 3 qubits. Its matrix and circuit repre-
sentations are as follows:
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CSWAP =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(3.14)

•

×

×
CSWAP gate

3.2.10 Example of an entangling circuit

By means of a simple example we illustrate how these quantum circuits help
to visualize certain operations on qubits. Which operations does the quantum
circuit below indicate?

|0〉2 H •

|0〉1
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Recall the action of the Hadamard gate H

H : |0〉 −→ (|0〉+ |1〉)/
√

2, H : |1〉 −→ (|0〉 − |1〉)/
√

2

and that of the CNOT gate (j = 0,1):

CNOT(|0〉2⊗ |j〉1) = |0〉2⊗ |j〉1, CNOT(|1〉2⊗ |j〉1) = |0〉2⊗ |j
′〉1,

where j′ = 1 for j = 0 and j′ = 0 for j = 1. Thus this circuits represents the
following calculations:

CNOT(H ⊗ I2(|0〉2⊗ |0〉1)) = CNOT(|0〉2⊗ |0〉1 + |1〉2⊗ |0〉1)/
√

2

=
1√
2
(|0〉2⊗ |0〉1 + |1〉2⊗ |1〉1)

(3.15)

Thus the above circuit transforms the separable state |0〉2 ⊗ |0〉1 into the fully
entangled state (3.15).
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Chapter 4

Quantum Information Theory

4.1 Classical Information Theory

Classical information theory as developed by C. Shannon and his successors
addresses the following type of questions and suggests solutions.

Suppose a certain message is to be transmitted from a location A to a loca-
tion B.

1. What resources are need for this transmission?

2. If we have a transmission channel with capacity of c bits per second, how
long will it take?
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3. If the transmission introduces errors (e.g. noise) what can be done about
this?

Recall that a string of n bits can represent N = 2n messages. Thus, for the
transmission of one of N distinct messages it is sensible to define the amount
of information carried by a single message to be

log2 N bits.

But typically one has to transmit a message from a given collection of N mes-
sages repeatedly, and if the messages can be assigned a non-uniform probability
distribution, then, on average it is possible to use fewer than log N bits per
second in order to transmit or store them.

Data compression (for instance ‘gzip‘) is a known method to store messages
efficiently. The key observation is to encode more common messages by using
short strings of bits while less common message are encoded by longer strings.

The Shannon entropy is a logarithmic information measure, typically de-
noted H(X) if X is a collection of labels x for a set of N messages. Suppose
that p(x) is the probability for message x, with ∑x p(x) = 1. Or X is a ran-
dom variable, i.e., a numerical function on some sample space; each x may
correspond to several points in the sample space and p(x) is the sum of the
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probabilities associated with these points. Then one defines

H(X) = H(p) = −∑
x

p(x) log2 p(x). (4.1)

Basic properties:

• H(X)≥ 0 and H(X) = 0 iff there is some x0 such that p(x0) = 1 and p(x) =
0 for x 6= x0.

• If x can take only k values then H(X) ≤ logk and H(X) = logk iff p(x) =
1/k for all x.

An intuitive interpretation of H(X) is the amount of information on average
conveyed by an observation of x. If x is a message, then H(X) is the average
missing information about the message before it is received, and thus the aver-
age information conveyed by the message, since after a message is received
(and read), the missing information about this particular message is 0.

One can also think of H(X) as the difference, on average, of the information
possessed by someone who knows what the actual message is, over against
someone who knows the probability distribution but does not know the mes-
sage.
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Next, send a large number M of messages, all from the same collection X,
one after the other. One expects that the total information conveyed by all
messages is MH(X).

MH(X) can also be interpreted as the minimum number of bits required to
transmit M messages when M is large.

4.1.1 The case of two random variables

In this case some new aspects emerge which we discuss briefly in the simplest
setting. Suppose that we are given two random variables X and Y, each with
a finite number of discrete values. Suppose furthermore that X is sent from a
location A to a location B through a noisy channel without memory so that the
output is Y. Then the output is related to the input by conditional probabilities:
Given an input x, the probability that y emerges is p(y|x). These conditional
probabilities p(y|x) are characteristics of the given channel.

Basic properties of these conditional probabilities are:

p(y|x) ≥ 0, ∑
y

p(y|x) = 1 . (4.2)

Furthermore, the probability p(x) that a message x is sent into the channel is
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determined by the ensemble X. Once p(x) is given, the joint probability p(x,y)
that x enters the channel and y emerges, and the (marginal) probability p(y)
that y emerges are given by

p(x,y) = p(y|x)p(x), p(y) = ∑
x

p(x,y) . (4.3)

Given these probabilities we can define the various information entropies ac-
cording to (4.1):

H(X) = H(p(x)), H(Y) = H(p(y)), H(X,Y) = H(p(x,y)), (4.4)

thus in particular

H(X,Y) = −∑
x,y

p(x,y) log(p(x,y)) . (4.5)

4.1.2 Conditional Entropies and mutual Information

The conditional entropies H(Y|x) and H(Y|X) are defined by

H(Y|x) = −∑
y

p(y|x) log p(y|x), H(Y|X) = ∑
x

p(x)H(Y|x) (4.6)
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and similarly for H(X|y) and H(X|Y)

H(X|y) = −∑
y

p(x|y) log p(x|y), H(X|Y) = ∑
y

p(y)H(X|y)

where p(x|y) = p(x,y)/p(y). Alternatively one can write

H(Y|X) = H(X,Y)− H(X), H(X|Y) = H(X,Y)− H(Y) . (4.7)

In the context of these formulae it is assumed that both at location A (Alice)
and B (Bob) the joint probability distribution p(x,y) and hence all marginals
and conditionals are known. What they do not know until they see it is what
actually occurs in a particular case.

Interpretation of (4.6): When Alice puts a message x into the channel, she cannot
be sure what y will emerge, since the channel is noisy. Then on average her
ignorance about y is given by H(Y|x). Avering this over all possible input
messages x gives the overall average H(Y|X) of information which Alice lacks
about outputs when she knows the inputs.

By interchanging the roles of Bob and Alice a similar interpretation results
for H(X|y) and H(X|Y).
Interpretation of (4.7): The above H quantities can be thought of as missing
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information. Before Alice knows what x will go though the channel, her (av-
erage) ignorance about both x and y is measured by H(X,Y). When message
x actually appears and she sees it, her ignorance is reduced on average by
H(X), thus H(X,Y)− H(X) is the information about the pair (x,y) that she is
still lacking, and which, since she knows x, is missing information about y.

The mutual information

I(X : Y) = H(Y)− H(Y|X) = H(X)− H(X|Y) = H(X) + H(Y)− H(X,Y)
(4.8)

is the average amount of information which Alice, knowing x, has about the
output y resulting from this x. It is Alice’s (average) ignorance about y before
knowing x, minus her ignorance about y when she knows x, and therefore the
amount of information that she learns about y on average from observing x.

The second and third version in (4.8) follow from (4.7). The third version
actually shows that the mutual information is symmetrical:

I(X : Y) = I(Y : X) .

Hence, the average amount which Bob learns about x by observing y is the
same as the average amount which Alice knows about y when sending x. This
important symmetry is intuitively not obvious.
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By tracing the various definitions I(X : Y) can also be expressed directly in
terms of probabilities as

I(X : Y) = −∑
x,y

p(x,y) log
p(x)p(y)

p(x,y)
. (4.9)

This formula shows that I(X : Y) is a measure of correlation in the sense of
statistical independence, namely one can show:

a) I(X : Y) ≥ 0;

b) I(X : Y) = 0 iff X and Y are statistically independent, i.e., iff p(x,y) =
p(x)p(y).

Remark 4.1.1 The definitions and motivations for the various entropies and the mu-
tual information have been given with reference to the transmission of information
through a channel. It is important to realize that the same definitions can be made
for two random variables X and Y which have a joint probability distribution p(x,y),
since then one can deduce the marginals p(x) and p(y) and the above formulae can be
used.
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4.1.3 Channel capacity

The above interpretations also show that I(X : Y) can be identified with the av-
erage rate at which information is being transmitted through the given channel;
hence, if the channel is used M times (with M large) the information passing
through it is about MI(X : Y) bits.

In our discussion we had mentioned that the conditional probability p(y|x)
is a characteristic of the channel. According to (4.9) the mutual information
I(X : Y) depends on p(y|x) and p(x). Denote by Qp(y|x) all probabilities p(x)
which are compatible with p(y|x) and define the channel capacity C by

C = sup
Qp(y|x)

I(X : Y) . (4.10)

The capacity C of a channel is the maximum possible rate at which informa-
tion can be reliably (using appropriate error correction) transmitted through a
noisy channel , measured in bits of information per uses of the channel. Here it
is assumed that a "memoryless channel" is used, i.e., p(y|x) is the same every
time the channel is used, independently of what was previously sent through
the channel.
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4.2 Quantum Information Theory

Naturally, quantum information theory is to be the quantum analogue of clas-
sical information theory. Accordingly the quantum counter parts of classical
information theory have to be defined, i.e., quantum information, quantum
channels, measures of quantum information.

4.2.1 Quantum samples

The basis of classical probability theory and thus of classical information the-
ory is the sample space. Accordingly we begin by defining the quantum sample
space as a decomposition of the identity on the Hilbert space H of our quantum
system:

∑
j

Pj = I = idH, PjPk = δjkPj (4.11)

where the Pj are orthogonal projectors on H (i.e., P∗j = Pj = P2
j ), different from

0. Such a decomposition represents a collection of mutually-exclusive proper-
ties or “events", one and only one of which is “true" or “occurs". The corre-
sponding event algebra contains all projectors which can be written as a sum of
these, and in addition the zero projector and the identity I.
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To such a quantum sample
{

Pj
}

one assigns probabilities
{

pj
}

. Typically
these probabilities are generated through the use of the Born rule, see (2.11)
and (2.12). Recall that the probability that a quantum observable has a partic-
ular value is equal to the probability assigned to the projector onto the eigen-
space of this eigen-value. Thus this projector must be part of some decompo-
sition of the identity to which one has managed to assign probabilities. This is
often referred to as the probability that this observable will have this particular
value “if measured".

4.2.2 Compatible and incompatible quantum samples

Two quantum samples
{

Pj
}

and {Qk} are compatible iff for every j,k

PjQk = QkPj ,

otherwise they are incompatible.
The commutativity of the projection operators from one quantum sample or

two compatible quantum samples implies that all results of classical (Shannon)
information theory carry over to the quantum domain, as expected.

Incompatible quantum samples must not be combined.
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4.2.3 Mutually-unbiased quantum samples

Two distinct quantum samples for a single qubit are always incompatible (think
of the eigen-projections onto the eigen-spaces of the spin matrices σz and σx).
But the degree of incompatibility may differ. The following definition ex-
presses this in quantitative terms.

Observe that given an orthonormal basis
{∣∣ej

〉}
of a Hilbert space H of

dimension m the family
{
[ej]
}

of orthogonal projectors onto the subspaces
spanned by the ej form a decomposition of the identity and thus a quantum
sample.

Two orthonormal bases
{∣∣ej

〉}
and

{∣∣ej
〉}

of H are called mutually unbiased
iff for every j and every k

|
〈
ej
∣∣ ek
〉
| = 1√

m
, or Tr([ej][ek]) =

1
m

. (4.12)

4.2.4 Quantum channels

Recall that a classical channel (see figure below) is characterized by the condi-
tional probability p(y|x) that a y emerges when a message x has been put into
the channel.
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Figure: A channel transmitting x to y

An ideal or perfect or noise-free classical channel is one for which the output is
an exact reproduction of the input, i.e., p(y|x) = δxy.

A perfect quantum channel is a channel which does not change the internal
state of a particle going through it. Thus for instance when a spin half particle
enters such a channel with Sz =+1/2 it will emerge with Sz =+1/2, if it enters
in the state Sy = −1/2 it exits with Sy = −1/2.

In the context of information theory we are only interested in the internal
state of a particle, as information this particles carries.

A channel in which the internal state of the particle that enters and the par-
ticle that emerges can be described using a two-dimensional Hilbert space is a
one qubit channel. Such a channel could be perfect or noisy.

Suppose that a particle enters a channel in the internal quantum state |ψ〉
and emerges in a state U|ψ〉, where U is a unitary operator independent of
|ψ〉. Such a channel is called an ideal quantum channel. Consider the example
of a qubit channel for which the unitary operator U equals the Hadamard gate
H (see(3.5)) . If a particle enters such a channel in the state Sz = +1/2, it will
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emerge in the state Sz =+1/2; if it enters in the state Sy =−1/2, it will emerge
in the state Sy = +1/2.

A quantum channel which transmits one type of quantum information, i.e.,
one quantum sample corresponding to a particular orthonormal basis of the
state space, whereas all mutually unbiased quantum samples are turned into
pure noise (that is no information is transmitted), is a perfect classical channel
or perfectly decohering channel. If a quantum channel transmits all types of
quantum information perfectly, it is a perfect quantum channel.

Remark 4.2.1 One can show: If a quantum channel perfectly transmits two mutually
unbiased quantum samples then it perfectly transmits all other quantum samples as
well.

4.2.5 von Neumann entropy

The counterpart of Shannon’s entropy (4.1) has to provide a measure which
quantifies “missing information" for any specific quantum sample. This can
be done as follows: Given a quantum sample (4.11) assign a probability dis-
tribution p = (p1, p2, . . .) to it and calculate the Shannon entropy (4.1) for this
distribution.
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A very useful entropy measure which is independent of the quantum infor-
mation type is the von Neumann entropy which is defined for general density
matrices ρ by

S(ρ) = −Tr(ρ logρ) (4.13)

using spectral calculus (2.5). Since every density matrix ρ has the spectral
representation

ρ = ∑
j

ρj[ej]

with eigen-values ρj > 0 and eigen-vectors ej one easily finds

S(ρ) = −∑
j

ρj logρj, ρ = ∑
j

ρj[ej] . (4.14)

Note the basic properties of the von Neumann entropy:

• S(ρ) ≥ 0 for every density matrix ρ and S(ρ) = 0 iff ρ is pure, i.e., of the
form ρ = |ψ〉〈ψ| for a unit vector |ψ〉.

• For any invertible matrix U and any density matrix ρ one has S(UρU−1) =
S(ρ), i.e., the von Neumann entropy is invariant under similarity transfor-
mations.
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Often a density matrix ρ is considered a “pre-probability" and one can show
that the von Neumann entropy S(ρ) represents the minimum missing informa-
tion associated with a pre-probability ρ.
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Chapter 5

Dense Coding, no Cloning and Teleportation

5.1 Fully entangled states and local unitaries

Recall that we mentioned earlier that entanglement is peculiar to quantum
mechanics and in quantum information theory entanglement is used as an im-
portant resource. The first two cases we discuss are dense coding and telepor-
tation. Thus we collect here some basic facts about a special class of entangled
states.

Suppose that Ha and Hb are two Hilbert spaces of dimension d. Recall that
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any state |ψ〉 ∈ H =Ha ⊗Hb has a Schmidt representation

|ψ〉 =
d

∑
j=1

λj
∣∣aj
〉
⊗
∣∣bj
〉

(5.1)

with suitable orthonormal bases
∣∣aj
〉

respectively
∣∣bj
〉

ofHa respectively ofHb.
Such a state is called fully entangled or maximally entangled iff all coefficients are
equal, i.e., λj = 1/

√
d for all j in the case that |ψ〉 is of norm 1.

Suppose that |ψ〉 ∈ H is normalized. The reduced density operators on Ha

respectivelyHb are defined

ρa = Tr b([ψ]), ρb = Tr a([ψ]) (5.2)

where Tr b denotes the partial trace of the density operator [ψ] = |ψ〉〈ψ| on
Ha ⊗Hb with respect to the Hilbert space Hb and similarly for Tr a. An easy
calculation then shows that |ψ〉 is fully entangled iff

ρa =
1
d

Ia and ρb =
1
d

Ib (5.3)

where Ia (Ib) denoted the identity operator onHa (Hb).
Since the transition from one orthonormal basis to another is effected by a

unitary matrix another easy calculation shows: If |ψ〉 and |φ〉 are both normal-

E. Brüning 64



CHAPTER 5. TELEPORTATION 5.1. FULLY ENTANGLED STATES

ized fully entangled states onHa⊗Hb there a unitary operators Ua onHa and
Ub onHb such that

|φ〉 = (Ua ⊗Ub)|ψ〉 . (5.4)

Since the subsystem A with the Hilbert space Ha and the subsystem B with
the Hilbert space Hb are often located in two separate laboratories one refers
to the unitary operators Ua and Ub in (5.4) as local unitaries. And we can say
for instance that a local operation in A can change a fully entangled state |ψ〉
also in the distant location B!

For two qubits one has d = 2 and the states∣∣φ+
〉
= |B0〉 = (|00〉+ |11〉)/

√
2∣∣ψ+

〉
= |B1〉 = (|01〉+ |10〉)/

√
2∣∣φ−〉 = |B2〉 = (|00〉 − |11〉)/
√

2∣∣ψ−〉 = |B3〉 = (|01〉 − |10〉)/
√

2

(5.5)

are fully entangled and are easily seen to be an orthonormal basis of H =
C2⊗C2. These states are called Bell states .

Recall the action of the Pauli gates X and Z introduced in (3.6) and (3.7):

X : |0〉 −→ |1〉 , |1〉 −→ |0〉; Z : |0〉 −→ |0〉 , |1〉 −→ −|1〉 .
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Now a straight forward calculation shows that the Bell states B1, B2, B3 can be
obtained from the Bell state B0 by applying local unitaries:

|B1〉 = (X⊗ Ib)|B0〉
|B2〉 = (Z⊗ Ib)|B0〉
|B3〉 = (ZX⊗ Ib)|B0〉

(5.6)

5.2 Dense Coding

Dense coding (or often also called super dense coding) and teleportation are
two processes which can be considered as the starting point of modern quan-
tum information theory. Both demonstrated completely new features of quan-
tum information as opposed to classical information and both are based on the
use of (fully) entangled states. The original papers 1 and 7 provided explicit
examples using qubits. Later many extensions of their schemes were found.
An early systematic approach is proposed in 16. There it is shown in particular
that each of the published teleportation schemes also works as a dense coding
scheme, and conversely (for tight schemes): Sender (Alice) and receiver (Bob)
merely have to swap the equipment they use.
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We are going to explain the basic ideas for dense coding and teleportation
only for the simplest cases of qubits.

The essence of dense coding is: Suppose A and B have a quantum channel
over which A can send qubits to B. One way to send her message is to encode
0 as |0〉 and 1 as |1〉.

If A and B share a Bell state, then A can send two classical bits of information
using only one qubit.

The details are as follows: Suppose A and B share the Bell state |φ+〉, see
(5.5). Depending on the message Alice wants to send, she applies a suitable
gate to her qubit and then sends it to Bob. If Alice wants to send

00
01
10
11

 she applies


I2⊗ I2

Z⊗ I2

X⊗ I2

XZ⊗ I2

 to |φ+〉 and gets


|φ+〉
|φ−〉
|ψ+〉
|ψ−〉


where we used (5.6). After receiving the message from Alice, Bob has one of
the four mutually orthogonal Bell states. When he applies a measurement he
can distinguish between them with certainty and thus can determine Alice’s
message.
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Note that Alice used two qubits in total so send two classical bits, since Alice
and Bob started with a shared Bell state. However, the first qubit, i.e., Bob’s
half of the Bell state, could have been sent well before Alice decided what
message she wanted to send. Only after she had decided on her message, she
sent the second qubit.

And one can show that one cannot do better. Two qubits are necessary to
send two classical bits. Dense coding allows half the qubits to be sent before
the message has been chosen.

5.3 Teleportation

In the process of quantum teleportation or entanglement assisted teleporta-
tion the state of a qubit is replaced by that of another. The state is “transmitted"
by setting up an entangled state-space of three qubits and then removing two
qubits from the entanglement (via measurement). Since the information of
the source qubit is preserved by these measurements that “information" (i.e.
state) ends up in the final third, destination qubit. This occurs without the
source and destination qubit ever directly interacting. The interaction occurs
via entanglement.
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It is unrelated to the popular science fiction term of teleportation.
The idea of teleporting qubits from one location A to a distant location B

was first suggested in 1993 in the seminal paper (7). Since then various exten-
sions and generalizations (using photons or atoms) have been suggested, also
experimentally.

Distances of more than 100 km have been used in quantum teleportation
experiments.

The established protocol for teleportation of qubits between two distant lo-
cations A and B reads:

1. An EPR pair (i.e., two entangled qubits in one of the Bell states, usually
|φ+〉) is generated, and one qubit is send to location A, the other to location
B.

2. At A there are two qubits, one to be teleported, the other the qubit from the
EPR pair. A Bell measurement of these two qubits is performed yielding
two classical bits and destroying these qubits in the process.

3. The two bits are sent from location A to B, using a classical channel, for
instance a telephone line.
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4. The qubit at B from the EPR pair is sent through a suitable quantum gate
(determined by the two bits received from A) to produce a qubit which is
identical to the one to be teleported.
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TELEPORTATION OF QUBITS

Flowchart

Pair of entangled qubits
Q1 Q2

Q3

Bob

Q1

Alice

Q3 Q2

CNOT

Q3 - control qubit
Q2 - target qubit

measurement on the pair
Q2, Q3

Q3 - measured
Q2 - unchanged

measurement on the
pair Q2, Q3 changes
the state of Q1 to one
of four basis states.

results of
measurement

received from Alice:
00 01 10 11

results of measurement
sent to Bob:
00 01 10 11

Quantum

Channel

Classical

Channel

XZZXI

Q1 in the same state as Q3
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Detailed computation.

Generating an EPR pair: The quantum circuit from Example 3.2.10 generates
the Bell state |φ+〉 for two qubits in the states |0〉j, j = 1,2.

∣∣φ+
〉

21 =
1√
2
(|0〉2⊗ |0〉1 + |1〉2⊗ |1〉1) = CNOT(H ⊗ I2(|0〉2⊗ |0〉1)). (5.7)

Qubit 2 is sent to A and qubit 1 to B.
Bell measurement at A: Suppose that qubit 3 at A which is to be teleported is in
the state

|ψ〉3 = a|0〉3 + b|1〉3. (5.8)

The state of our 3 qubit system then is

|ψ〉3⊗
∣∣φ+
〉

21 =
1√
2
(a|0〉3⊗ (|00〉21 + |11〉21) + b|1〉3⊗ (|00〉21 + |11〉21))
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which we write as

=
1√
2

(
a|00〉32⊗ |0〉1 + a|01〉32|1〉1 + b|10〉32⊗ |0〉1 + b|11〉32⊗ |1〉1

)
=

a
2
(∣∣φ+

〉
32 +

∣∣φ−〉32

)
⊗ |0〉1 +

a
2
(∣∣ψ+

〉
32 +

∣∣ψ−〉32

)
⊗ |1〉1

+
b
2
(∣∣ψ+

〉
32−

∣∣ψ−〉32

)
⊗ |0〉1 +

b
2
(∣∣φ+

〉
32−

∣∣φ−〉32

)
⊗ |1〉1

=
1
2

∣∣φ+
〉

32(a|0〉1 + b|1〉1) +
1
2

∣∣φ−〉32(a|0〉1− b|1〉1)

+
1
2

∣∣ψ+
〉

32(a|1〉1 + b|0〉1) +
1
2

∣∣ψ−〉32(a|1〉1− b|0〉1)

=
1
2

∣∣φ+
〉

32|ψ〉1 +
1
2

∣∣ψ+
〉

32X|ψ〉1 +
1
2

∣∣φ−〉32Z|ψ〉1 +
1
2

∣∣ψ−〉32(−i)Y|ψ〉1

Since (−i)σ2 = σxσz we conclude

|ψ〉3⊗
∣∣φ+
〉

21 =

1
2

[∣∣φ+
〉

32⊗ I|ψ〉1 +
∣∣ψ+

〉
32⊗ X|ψ〉1 +

∣∣φ−〉32⊗ Z|ψ〉1 +
∣∣ψ−〉32⊗ XZ|ψ〉1

]
(5.9)

Hence, when Alice performs a Bell measurement on her two-qubits system
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Q2, Q3, i.e., when she measures the two commuting observables

σ
(3)
x ⊗ σ

(2)
x , σ

(3)
z ⊗ σ

(2)
z (5.10)

she finds with probability 1
4 that her system is in one of the four Bell states

which appear in (5.9). As expressed in (5.9) Alice Bell measurement estab-
lishes a correlation between Q1 and Q3. She sends her measurement result
through a classical channel to Bob who applies a suitable gate according to the
information he received.

If Alice measures

|φ+〉32
|ψ+〉32
|ψ−〉32
|φ−〉32

Bob applies

I
X

XZ
Z

and gets according to (5.9) the state |ψ〉1 for his qubit Q1, since X2 = Y2 = Z2 =
I.

With the help of the results form subsection 2.7.1 we can easily read off from
(5.9) the results of a Bell measurement of the subsystem formed by qubit 2 and
3 at A. The following quantum circuit is drawn for the case that Alice found
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|ψ−〉32 and Bob applies the gates XZ.

|ψ〉3 • H •

|0〉2

|0〉1 H • X Z |ψ〉1

5.4 No Cloning

As we are going to explain quantum information cannot be perfectly copied or
“cloned". This fact is stated in various no-cloning theorems. The basic version
states:

There is no quantum copying machine that can make two perfect copies
(or one perfect copy and a remaining perfect original) of two (or more)
nonorthogonal states.

Note that this says nothing about making as many perfect copies as one wants
of mutually orthogonal states using a quantum copy machine. And within the

E. Brüning 75



5.4. NO CLONING CHAPTER 5. TELEPORTATION

standard model of a quantum coping machine or hypothetical cloning ma-
chine this is actually a very elementary result. Here is the usual model.

Ha and Hb Hilbert space of
the same dimension, T uni-
tary operator onHa ⊗Hb

Hypothetical cloning machine

In practice one works under the assumption that Ha = Hb and that T acts
according to the equation

T(|ψ〉 ⊗ |b〉) = |ψ〉 ⊗ |ψ〉 (5.11)

where |b〉 is some reference unit vector inHb and |ψ〉 varies inHa. It is easy to
see that for a particular |ψ〉 ∈ Ha one can always construct a unitary operator
T such that (5.11) holds. But we will show that there is no fixed T which
accomplishes this for all possible inputs.

Suppose that
∣∣ψj
〉
∈ Ha are normalized and satisfy (5.11), i.e.,

T(|ψ1〉 ⊗ |b〉) = eiφ1|ψ1〉 ⊗ |ψ1〉
T(|ψ2〉 ⊗ |b〉) = eiφ2|ψ2〉 ⊗ |ψ2〉

(5.12)
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where φj are some phases. Taking the inner product of these two identities
gives, since T is unitary,

〈ψ1| ψ2〉 〈b| b〉 = ei(φ2−φ1) 〈ψ1| ψ2〉2

and thus
| 〈ψ1| ψ2〉 | = | 〈ψ1| ψ2〉 |2 .

The only solutions to the last equation are | 〈ψ1| ψ2〉 | = 0 or | 〈ψ1| ψ2〉 | = 1. In
the first case the two vectors are orthogonal and in the second case the two
vectors are identical apart from a phase factor. This proves our claim.

Some further versions of no-cloning theorems are known; the above version
gives just the essential core.
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Chapter 6

Quantum Cryptography

We recall here only very briefly a few basic facts from (classical) cryptography.
Cryptography is about sending messages between two parties in such a way
that its contents cannot be understood by someone other than the indended
recipient. The original message or plaintext is encrypted using an encryption
rule typically based on an encryption key to produce an unintelligible cybertext.
The recipient then applies a decryption rule, using the same key to the cybertext
in order to recover the original plaintext message.

The one-time pad (OTP) is a type of (classical) encryption which has been
proven to be impossible to crack if used correctly. Each bit or character from
the plaintext is encrypted by modular addition with a bit or character from a
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secret random key of the same length as the plaintext, producing the cybertext.
If the key is truly random, as large or greater than the plaintext, never used in
whole or part, and kept secret, the cybertext will be impossible to decrypt or
break without knowing the key. But obviously there are several practical prob-
lems and thus the OTP’s are not widely used.
Quantum cryptography is concerned with the distribution of encryption keys
for cryptography where the distribution of this key is protected by basic prin-
ciples of quantum mechanics. Nowadays there are several prominent quantum
key distribution protocols which we will discuss:

Protocols utilizing Heisenberg’s uncertainty
principle:

BB84 protocol
B92 protocol

Protocols utilizing quantum entanglement: Ekert’s protocol
Entangled BB84 variants.

We discuss in some detail only the BB84 and Ekert’s protocols.
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6.1 The BB84 Scheme

C. Bennet and G. Brassard published in 1984 3 the first QKD (Quantum Key
Distribution) protocol. Today it is still one of the most prominent protocols.
The basic idea of all HUP based protocols is as follows: Alice can transmit
a random secret key to Bob by sending a string of photons where the secret
key’s bits are encoded in the polarization of photons. Heisenberg’s Uncer-
tainty Principle is used to guarantee that an eavesdropper cannot measure
these photons and transmit them to Bob without disturbing the state of the
photons in a detectable way and thus revealing her presence.

In the BB84 protocol the bits are encoded in the polarization states of a pho-
ton. Usually one defines a binary 0 as a polarization of 0 degrees in the rec-
tilinear basis or 45 degrees in the diagonal basis. And similarly a binary 1
corresponds to 90 degrees in the rectilinear basis and 135 degrees in the diago-
nal basis. Thus a bit can be represented by polarizing the photon with respect
to one of these two bases.
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The rectilinear basis R is given by the vectors

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
.

Then the vectors of the diagonal basis D are

|+〉 = 1√
2
(|0〉+ |1〉) = H|0〉, |−〉 = 1√

2
(|0〉 − |1〉) = H|1〉,

and thus

|0〉 = 1√
2
(|+〉+ |−〉), |1〉 = 1√

2
(|+〉 − |−〉).

E. Brüning 82



CHAPTER 6. QUANTUM CRYPTOGRAPHY 6.1. THE BB84 SCHEME

If we perform measurements with respect to the bases R and D our formula
(2.13) for the post-measurement state shows the following: A qubit can be
either in the state |0〉 or |1〉 in the R basis or in the state |+〉 or |−〉 in the D
basis. When a qubit is in one or the other state of the R basis then nothing can
be said about its state in the D basis. When a qubit is in one or the other state
of the D basis then nothing can be said about its state in the R basis.
More precisely we can say for instance: If a qubit is in the state |+〉 and we
measure in the D basis then this state is reproduced, but if we measure in the
R basis we find that the state |+〉 is destroyed and with probability 1/2 the
qubit is either in the state |0〉 or in the state |1〉, according to (2.13). The figure
below shows the basic scheme for the BB84 protocol.
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The various steps of the BB84 Quantum Key Distribution protocol are:

1. Alice and Bob decide (publicly) on an acceptable key length N, taking a
sensible error margin into account.

2. Secretly Alice chooses a random string of length 4N of data bits d1,d2, . . . ,d4N

and a random string of length 4N of letters a1, a2, . . . , a4N, aj ∈ {R, D}.

3. Bob too chooses secretly a random string of length 4N of letters b1,b2, . . . ,b4N,
bj ∈ {R, D}.

4. Alice now does the following: For j ∈ {1,2, . . . ,4N} she prepares the jth

qubit in the state
∣∣dj(aj)

〉
, i.e., the data value of the state is given by dj and

the basis is specified by aj. After this preparation Alice sends the jth qubit
to Bob, through the quantum channel.

5. Bob receives the jth qubit and measures it in the basis bj and gets a classical
bit ej, for j ∈ {1,2, . . . ,4N}.

6. Alice and Bob exchange in public their basis label strings a1, a2, . . . , a4N

and b1,b2, . . . ,b4N. Now both know the indices at which a1, a2, . . . , a4N and
b1,b2, . . . ,b4N agree, respectively disagree. They both discard those ele-
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ments where there is disagreement. This leaves a common string c1, c2, . . . , c 2N,
cj ∈ {R, D}, which is typically of length about 2N.

7. Alice discards all elements of the string d1,d2, . . . ,d4N that do not corre-
spond with elements of the string c1, c2, . . . , c 2N. This gives a string of bits
D1, D2, . . . , D 2N which is typically of length about 2N.

8. Bob discards the elements of the string e1, e2, . . . , e4N that do not correspond
to elements of the string c1, c2, . . . , c 2N. This leave him with a string of bits
E1, E2, . . . , E 2N, again typically of length about 2N.

9. Note that cj, for each j ∈ {1,2, . . . , 2N}, is a basis name randomly cho-
sen the same for the jth qubit by Alice for preparation and by Bob for
measurement. Thus the value Ej measured by Bob equals the value Dj

prepared and sent by Alice. Therefore the two binary strings are equal:
D1, D2, . . . , D 2N = E1, E2, . . . , E 2N. This common string can thus serve as a
candidate secret key for communication between Alice and Bob.

10. Alice and Bob choose publicly a randomly selected subsequence of c1, c2, . . . , c 2N,
typically of length about N and exchange publicly the subsequences of
D1, D2, . . . , D 2N and E1, E2, . . . , E 2N that correspond to these values. They
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should agree perfectly if there is no noise and/or eavesdropping.

11. If Eve has been eavesdropping, then about 25% of these values will disagree∗.
In this case Alice and Bob have to start again.

12. If there was no eavesdropping the remaining subsequences of D1, D2, . . . , D 2N

and E1, E2, . . . , E 2N, each of typical length about N, constitute a common se-
quence of bits K1,K2, . . . , K N which is secretly shared by Alice and Bob and
can serve as a secret key.

∗ Since Eve does not know the basis which has been assigned to each qubit
she is likely to guess the basis incorrectly 50% of the time, and thus when she
measures, any time she guesses wrong she will destroy the original state of the
qubit and the classical information she gets, i.e., the bits, will be wrong 50% of
the time.

If one assumes a noiseless quantum channel and that there are no measure-
ment errors, a disagreement in any of the bits which are compared would
indicate the presence of an eavesdropper on the quantum channel. If Eve the
eavesdropper would attempt to determine the key, she would have no choice
but to measure the photons sent by Alice before sending them to Bob. This is
the case since the no-cloning theorem assures that she cannot replicate a particle
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of unkown state. Since Eve will not know which bases Alice used to encode the
bit until after Alice and Bob discuss their measurements, Eve has to guess. If
she measures on the incorrect basis, Heisenberg’s Uncertainty Principle ensures
that the information encoded in the other basis is now lost. Thus when the
photon reaches Bob, his measurement will now be random and he will read a
bit incorrectly 50% of the time. Given that Eve will choose the measurement
basis incorrectly on average 50% of the time, 25% of Bob’s measured bits will
differ from Alice’s. If Eve has eavesdropped on all the bits, then after n bits
comparisons by Alice and Bob, they will reduce the probability that Eve will
not be detected to (3

4)
n. Hence the chance that an eavesdropper can be success-

ful will become negligible, if a sufficiently long sequence of bits are compared.

Here is an example for the BB84 protocol:
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1,2, . . . ,4N 1 2 3 4 5 6 7 8 9 10 11 12

Bob’s bj’s D R D D R D R R D D D R
Alice’s aj’s R R D R R R D R D D D R
Alice’s dj’s 0 1 1 0 1 1 1 0 1 0 1 0
Alice’s sends |0〉 |1〉 |−〉 |0〉 |1〉 |1〉 |−〉 |0〉 |−〉 |+〉 |−〉 |0〉
aj = bj ? y y y y y y y y
Bob measures |1〉 |−〉 |1〉 |0〉 |−〉 |+〉 |−〉 |0〉
Security test 1 0 0 1
Secret key 1 1 1 0

Remark 6.1.1 The B92 protocol was proposed by C. Bennet in 1992 2. It is essentially
a simplified version of the BB84 protocol which uses only two non-orthogonal states
instead of the 4 polarization states of the BB84 protocol. This 2-state encoding of the
B92 protocol can be done as follows: 0 is encoded as 0o in the rectilinear basis and 1 is
encoded as 45o in the diagonal basis.
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6.2 Ekert’s protocol E91

This protocol was suggested in 1991 by Artur Ekert (Oxford and Singapore).
It is based on quantum entanglement. The basic scheme for this protocol is:

Entanglement based QKD model

The source emits entangled particles, typically polarized photons which are

E. Brüning 89



6.2. EKERT’S PROTOCOL E91 CHAPTER 6. QUANTUM CRYPTOGRAPHY

spatially separated. In detail the E91 quantum key distribution protocol
reads:

0. Alice and Bob share 4N maximally entangled qubit pairs, i.e. Alice has
one qubit of each entangled pair and Bob has the other.

1. Alice and Bob publicly decide an an acceptable key length N taking a sen-
sible error margin into account.

2. Alice secretly chooses a random string of length 4N of letters a1, a2, . . . , a4N,
aj ∈ {R, D}.

3. Bob secretly chooses a random string of length 4N of letters b1,b2, . . . ,b4N,
bj ∈ {R, D}.

4. For each j, 1≤ j ≤ 4N, Alice measures her qubit of the jth pair in the basis
aj and gets a classical bit dj.

5. For each j, 1≤ j ≤ 4N, Bob measures his qubit of the jth pair in the basis bj

and gets a classical bit ej.

6. Alice and Bob exchange publicly their basic label strings a1, a2, . . . , a4N and
b1,b2, . . . ,b4N. They both know now the indices at which a1, a2, . . . , a4N and
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b1,b2, . . . ,b4N agree and the indices at which a1, a2, . . . , a4N and b1,b2, . . . ,b4N

disagree. Alice and Bob discard the elements that disagree and they are
left with a common string (typically of length about 2N) c1, c2, . . . , c 2N.

7. Alice discards the elements of d1,d2, . . . ,d4N that do not correspond to c1, c2, . . . , c 2N

and gets a string of bits (typically of length about 2N) D1, D2, . . . , D 2N.

8. Bob discards the elements of e1, e2, . . . , e4N that do not correspond to c1, c2, . . . , c 2N

and gets a string of bits (typically of length about 2N) E1, E2, . . . , E 2N.

9. For each j ∈ {1,2, . . . , 2N}, cj is the name of a basis chosen the same by
Alice and Bob for the jth pair of maximally entangled qubits , the value Ej

measured by Bob, equals the value Dj measured by Alice. Hence the two
binary strings are equal: D1, D2, . . . , D 2N = E1, E2, . . . , E 2N. Thus they can
serve as a candidate secret key for communication between Alice and Bob.

10. Alice and Bob choose publicly a randomly selected subsequence of c1, c2, . . . , c 2N

(typically of length about N), and exchange in public the subsequences of
D1, D2, . . . , D 2N and E1, E2, . . . , E 2N that correspond to these values. Ideally
they should agree perfectly.

11. If Eve has been eavesdropping, or the environment has degraded the max-
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imal entanglement of the qubit pairs, a significant proportion of these val-
ues will disagree. In this case, Alice and Bob must start again.

12. If not, the remaining subsequences of D1, D2, . . . , D 2N and E1, E2, . . . , E 2N

(each typically of length about N) constitute a common sequence of bits
K1,K2, . . . , K N, which is secretly shared by Alice and Bob, and thus can
serve as a secret key.

Here is a simple example for this protocol.

1,2, . . . ,4N 1 2 3 4 5 6 7 8 9 10 11 12
Alice’s aj’s R R D R R R D R D D D R
Bob’s bj’s D R D D R D R R D D D R
aj = bj ? y y y y y y y y
Alice’s dj’s 0 1 1 0 1 1 1 0 1 0 1 0
Bob’s ej’s 1 1 1 0 1 0 0 0 1 0 1 0
Alice’s Dj’s 1 1 1 0 1 0 1 0
Bob’s Ej’s 1 1 1 0 1 0 1 0
Security test 1 0 0 1
Secret key 1 1 1 0
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6.3 Commercial implementations

Quantum key distribution is nowadays beyond the experimental phase. Be-
side active research programs in various international companies (IBM, HP,
Mitsubishi, NEC, NTT) there are three companies offering commercial quan-
tum key distribution systems:

1. id Quantique (Geneva),

2. MagiQ Technologies (New York),

3. QuintessenceLabs (Australia).

Furthermore there are several quantum networks in operation.

1. DARPA Quantum Network: 10 nodes, running since 2004 in Massachusetts
(USA); BBN Technologies, Harvard University, Boston University and Qine-
tiQ.

2. SECOQC (Secure Communication based on Quantum Cryptography); the
world’s first computer network protected by quantum key distribution;
implemented in 2008 in Vienna, using more than 200 km of standard fibre
optic cables.
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Special event: In 2004, the world’s first bank transfer using quantum key
distribution was carried out in Vienna, Austria.

3. SwissQuantum: started in 2007 by Id Quantique in Geneva, first for trans-
mission of ballot results; from 2009 running reliably and stable for about
2 years, confirming the viability of QKD as a commercial encryption tech-
nology.

4. Tokyo QKD Network : The Tokyo QKD Network was inaugurated on the
first day of the UQCC2010 conference. The network involves an inter-
national collaboration between 7 partners; NEC, Mitsubishi Electric, NTT
and NICT from Japan, and participation from Europe by Toshiba Research
Europe Ltd. (UK), Id Quantique (Switzerland) and All Vienna (Austria).
"All Vienna" is represented by researchers from the Austrian Institute of
Technology (AIT), the Institute for Quantum Optics and Quantum Infor-
mation (IQOQI) and the University of Vienna.

5. Durban Quantum Network: since 2009 running on the municipal standard
fibre optic cables network;

special event in 2010: the connection of the football world cup soccer sta-
dium to the municipal network was secured by QKD;
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implemented by part of our group in Durban;

see http://quantum.ukzn.ac.za/
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Chapter 7

Shor Factorization

On a classical computer the multiplication of large prime numbers can be im-
plemented quite efficiently while the inverse function, i.e., finding the prime
factors of a large number has not yet been solved by an efficient algorithm.
Here an algorithm is called efficient if its execution time (the number of ele-
mentary operations) is asymptotically polynomial in the length of its input
measured in bit. The classical quadratic sieve algorithm needs

O
(
e(

64
9 )1/3N1/3(ln N)2/3)

operations for factoring a binary number of N bits, i.e., this algorithm scales
exponentially with the input size. It seems to be the best algorithm for this
problem.
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Exercise: Using only pen and paper find the (prime) factors of

29083

This means that the multiplication of large prime numbers is essentially a
one-way function which is the basis of the cryptographic algorithm developed
in 1978 by Rivest, Shamir, and Adelman. This method became the most popu-
lar public key system (RSA encryption).

It is believed that efficient prime factorization is impossible on a classical
computer. On a quantum computer however an efficient algorithm has been
proposed by P. Shor, inspired by work of D. Simon in 1994. This algorithm
finds the factors of a large composite number N, i.e., a number which can be
written in the form

N = pq (7.1)

where the numbers p,q are assumed to be relatively prime which means that
their greatest common divisor (gcd) is 1.

Here we will briefly explain the basic ideas for this factorization which takes
time O((log N)3) and hence the integer factorization can be efficiently solved
on a quantum computer and is in the complexity class BQP (bounded error
quantum polynomial time).
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The realizability of Shor’s algorithm has first been shown at IBM in 2001
where the number 15 was factored into 5× 3 using an NMR implementation
of a quantum computer with 7 qubits. In 2012 a group in Bristol (UK) achieved
the factorization of 21. At present it is not yet possible to factor really large
numbers since only relatively small quantum computers can be build.

The factorization method of Shor has two main parts, a classical part based
on results from number theory and classical computation, and a quantum part.
Under suitable restrictions the factorization problem is reduced in the classical
part to that of a ’period finding problem’. For a solution of the period find-
ing problem a suitable quantum computer is constructed which realizes the
quantum Fourier transform through which the discrete spectrum of the period
function in question can be determined approximately. Some post-processing
then allows to calculate the period.

We begin by recalling some mathematical background, then proceed to ex-
plain the reduction of the factorization problem to the period finding problem
and in the main part present the core of Shor’s quantum algorithm.
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7.1 Mathematical background

7.1.1 Some number theory

The Chinese remainder theorem

Suppose that m1,m2, . . . ,mk are positive integers which are coprime, i.e.,

gcd(mi,mj) = 1 for all i 6= j .

Then, for any given sequence of integers a1, a2, . . . , ak, there exists a unique in-
teger x, 1≤ x≤m1m2 · · ·mk = M solving the following system of simultaneous
congruences:

x ≡ aj modmj, j = 1,2, . . . ,k (7.2)

The solution is explicitly given as follows: Define Mj = M/mj, then gcd(mj, Mj) =
1 by our assumption and Mj has an inverse Nj ≡ M−1

j modmj, i.e.,

NjMj ≡ 1 modmj .

The unique solution of (7.2 is

x ≡ (a1N1M1 + a2N2M2 · · · akNkMk) mod M . (7.3)
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Euclid’s algorithm

This is an efficient method for calculating the greatest common divisor gcd(n1,n2)
of two given integers n1,n2. We assume n1 ≥ n2. Write n1 as a multiple k0 of n2

and a remainder r1:
n1 = k0n2 + r1, r1 < n2 .

Do the same with n2 and r1,

n2 = k1r1 + r2, r2 < r1 ,

and then repeat with the two r’s,

r1 = k2r2 + r3, r3 < r2 ,

n2 = k3r3 + r4, r4 < r3 ,
until the remainder is zero (which occurs since the remainders are stricly de-
creasing): So for some l,

rl−1 = klrl + rl+1, rl+1 < rl ,

rl = kl+1rl+1 + 0.
The greatest common divisor gcd(n1,n2) is then given by the last nonzero re-
mainder

gcd(n1,n2) = rl+1 .
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Euler’s ϕ function

For any integer N > 1 the set of integers n ∈ {1, . . . , N − 1}which are relatively
prime to N form a group Z∗N under multiplication mod N. Its order is given
by the value ϕ(N) of Euler’s ϕ function. For example take N = 15. Then Z∗15 is
the set {1,2,4,7,8,11,13,14} and thus its order is ϕ(15) = 8.

Since Z∗N is a multiplicative group, for any a ∈ Z∗N all powers am belong to
Z∗N and thus constitute the subgroup 〈a〉 of Z∗N generated by a. The order of
this subgroup is the smallest integer r ≥ 1 such that

ar = 1 mod N . (7.4)

This order r always divides ϕ(N) since the order of a subgroup always divides
the order of the group. For a = 2 the order of the subgroup 〈2〉 in our example
Z∗15 is r = 4 since 24 = 1 mod 15 and clearly r = 4 divides ϕ(15) = 8.
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Continued fractions

Given positive integers a0, a1, . . . , aN an expression of the form

a0 +
1

a1 +
1

a2 +
1

a3 +
1

· · ·+
1

aN

(7.5)

is called a finite continued fraction, usually abbreviated as [a0, a1, . . . , aN]. For
n ≤ N its n th convergent is [a0, a1, . . . , an] which can be written as pn/qn and
one has the recurrence

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2,
q0 = 1, q1 = a1, qn = anqn−1 + qn−2.

(7.6)

If the convergents pn/qn are calculated by this iteration, they are always in
their lowest term, i.e., gcd(pn,qn) = 1.

Next we recall the efficient algorithm which calculates the continued frac-
tion representation for any positive rational number x. Denote by xxy the

E. Brüning 103



7.1. MATHEMATICAL BACKGROUND CHAPTER 7. SHOR FACTORIZATION

greatest integer less than or equal to x. Then, with a0 = xxy, write x = a0 + ξ0

for some 0 ≤ ξ0 < 1. If ξ0 > 0, define a1 = x1/ξ0y and thus 1/ξ0 = a1 + ξ1 for
some 0 ≤ ξ1 < 1. If ξ1 > 0 define a2 = x1/ξ1y, etc. Since x is assumed to be
rational this process terminates and we get x = [a0, a1, . . . , an].

Eq. (7.5) shows that

[a0, a1, . . . , aN−1, aN] = [a0, a1, . . . , aN−1, aN − 1,1]

holds. Thus if we impose the condition aN > 1 the representation of x as a
continued fraction is unique.

We are going to use the following result.

Theorem 7.1.1 Suppose that p/q is a rational number satisfying∣∣p
q
− x
∣∣ < 1

2q2 .

Then p/q is a convergent of the continued fraction of x.

7.1.2 Quantum Fourier transform

The quantum Fourier transform is the classical discrete Fourier transform act-
ing on the vector of amplitudes of a quantum state. Recall that the classical
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discrete Fourier transform sends a vector (x0, x1, . . . , xN−1) ∈ CN to the vector
(y0,y1, . . . ,yN−1) ∈ CN with

yk =
1√
N

N−1

∑
j=0

ω jkxj,

where ω denotes the canonical Nth primitive root of unity in the complex
plane, i.e., ω = e

2πi
N . Accordingly the quantum Fourier transform sends the

quantum state ∑N−1
j=0 xj|j〉 to the quantum state ∑N−1

j=0 yj|j〉 where the yj’s are
given by the same formula.

Naturally the quantum Fourier transform can be described as a unitary ma-
trix acting on qubit states. The gate QFTn on n qubits is defined as the N × N
unitary matrix, N = 2n,

QFTn =
( ω jk
√

N

)
0≤j,k≤N−1 =

1√
N
·


1 1 1 · · · 1
1 ω1 ω2 · · · ω(N−1)·1

1 ω2 ω4 · · · ω(N−1)·2
... ... ... . . . ...
1 ωN−1 ω2·(N−1) · · · ω(N−1)2

 (7.7)

It is a simple calculation to show that this matrix is indeed unitary.
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For applications it is important that the quantum Fourier transform can be
implemented by a relatively simple quantum circuit which we describe now.

Consider an n qubit system. Its states can be represented in binary form

|x〉 = |x1, x2, . . . , xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉, xj ∈ {0,1}

where the xj are the binary digits in the representation x = ∑n
j=1 xj2n−j. Intro-

duce the abbreviation [0.x1 · · · xn] for the binary fraction ∑n
j=1 xj2−j and abbre-

viate

λj(x) = e2πi·[0.xj···xn].

This allows to realize the quantum Fourier transform in an simple way:

Proposition 7.1.2 The quantum Fourier transform on n qubits is given by the map

|x〉 −→ 1√
N

n−1⊗
j=0

(
|0〉+ λn−j(x)|1〉

)
(7.8)

E. Brüning 106



CHAPTER 7. SHOR FACTORIZATION 7.1. MATHEMATICAL BACKGROUND

The proof is a straight forward calculation.

√
N · |x1, x2, . . . , xn〉 −→

N−1

∑
k=0

e
2πixk

N |k〉

= ∑
k1∈{0,1}

· · · ∑
kn∈{0,1}

e2πix
∑n

j=1 kj2
n−j

2n |k1, . . . ,kn〉

= ∑
k1∈{0,1}

· · · ∑
kn∈{0,1}

e2πix∑n
j=1 kj2−j

|k1, . . . ,kn〉

= ∑
k1∈{0,1}

· · · ∑
kn∈{0,1}

n⊗
j=1

e2πixkj2−j∣∣k j
〉

=
n⊗

j=1

(
∑

kj∈{0,1}
e2πixkj2−j∣∣k j

〉)
=

n⊗
j=1

(|0〉+ e2πix2−j|1〉) =
n−1⊗
j=0

(|0〉+ eπix2−j|1〉)

=
n−1⊗
j=0

(|0〉+ eπi[0.xn−j···xn]|1〉)
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This result shows that the quantum Fourier transform can be calculated through
a combination of simple gates on individual qubits.

Recall the controlled U-gate (3.12) and introduce k-rotation gate Rk by

Rk =

(
1 0

0 e
2πi
2k

)
.

Theorem 7.1.3 Up to a reordering of the qubits, the quantum circuit depicted in the
following figure computes the quantum Fourier transform:
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7.2 Shor’s reduction of the factorization problem to order finding

Let N ∈N be given; consider the quadratic equation

x2 ≡ 1 modN. (7.9)

This equation always has the trivial solutions x ≡ 1 modN. If N is an odd
prime number p, then these are the only solutions, since multiplication mod-
ulo p has inverses and x2− 1≡ (x + 1)(x− 1) ≡ 0 mod p implies x− 1≡ 0 or
x + 1≡ 0 mod p. For a composite number N there are however also non-trivial
pairs of solutions x = ±a mod N as we show now: Assume that N is of the
form N = n1n2 with gcd(n1,n2) = 1 and consider the following set of equiva-
lences:

(a)

{
x1 ≡ 1 modn1

x1 ≡ 1 modn2
(a)

{
x2 ≡ −1 modn1

x2 ≡ −1 modn2

(c)

{
x3 ≡ 1 modn1

x3 ≡ −1 modn2
(d)

{
x4 ≡ −1 modn1

x4 ≡ 1 modn2
(7.10)

In all four sets of equivalences xj ≡ 1 mod n1 and mod n2; each xj satisfies
Equation (7.9). By the Chinese remainder theorem each set has a unique so-
lution mod N. From (a) and (b) we get the trivial solutions of Equation (7.9)
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x1 ≡ 1 and x2 ≡ −1 mod N, while from (c) and (d) we get a non-trivial pair
x3 ≡ a and x4 ≡ −a mod N of Equation (7.9). It follows that (a + 1)(a− 1) ≡ 0
mod N and a± 1 are nonzero. Hence N divides (a + 1)(a− 1), but does not
divide a± 1, since a± 1≤ N + 1. Hence the greatest common divisor of N and
a± 1 for a 6= ±1 is a nontrivial factor of N. And Euclid’s algorithm allows to
determine the greatest commen divisor of two given numbers efficiently.

How can we find a nontrivial solution x of Equation (7.9)? Choose a random
y < N. If y and N are coprime , let r be the order of y mod N. And this is the
period of the function for y and N, i.e., for

FN(a) = ya modN. (7.11)

Therefore
yr = 1 modN. (7.12)

If r is an even number and if we set

x = yr/2, (7.13)

then we have x2 ≡ 1 mod N and thus x is a candidate for a nontrivial solution
of Equation (7.9).

Certainly this procedure may fail if we have chosen a y which has an odd
order r, or if r is even but yr/2 turns out to be a trivial solution of Equation (7.9).
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Fortunately the following result shows that the probability for this to happen
is suitably small if y is chosen at random.

Theorem 7.2.1 Let N be an odd number with prime factorization

N = pm1
1 pm2

2 · · · p
mk
k . (7.14)

Choose a number y, 1≤ y ≤ N at random, satisfying gcd(y, N) = 1. If r is the order
of y mod N, then

Prob(r is even and yr/2 6≡ ±1modN) ≥ 1− 1
2k−1 . (7.15)

Note that in the case that N is even the factor 2 is easily detected and removed.

Remark 7.2.2 For the proof of the above theorem see 10. It can be extended to show
that

Prob(r is even and yr/2 6≡ ±1modN) ≥ 1
2

(7.16)

holds for all N which are not of the form pm or 2pm. In these cases the above proba-
bility is zero. But pure prime powers pm are known to be efficiently recognizable by a
classical probabilistic algorithm.

One can also show that for a random selection of y, 1 ≤ y ≤ N, the probability
of gcd(y, N) = 1 is greater than 1/log N. Thus, if we apply the above process to

E. Brüning 111



7.2. REDUCTION TO PERIOD FINDING CHAPTER 7. SHOR FACTORIZATION

a randomly chosen y for which we can compute the order r, we obtain a nontrivial
factor of N with probability greater than 1/2log N.

Let us consider a simple example of the above factoring method. Take N =
15. We know Z∗15 = {1,2,4,7,8,11,13,14}. Pick for instance y ∈ Z∗15, y = 11. The
values of 11a mod 15 for a = 1,2,3, . . . are 11,1,11,1,11, . . .. Thus the order of
11 modulo 15 is r = 2. This give x = yr/2 = 11. The largest common factors
gcd(x ± 1, N) are in this case gcd(10,15) = 5 and gcd(12,15) = 3, indeed the
two prime factors of 15.

Summary:

1. Pick randomly an integer y < N.

2. Using the Euclidean algorithm, compute gcd(y, N).

3. If gcd(y, N) 6= 1 there is a nontrivial factor of N, and we are done.

4. Otherwise we use the period-finding subroutine to find the period r of the
function (7.11).

5. If r is odd, go back to step 1.
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6. If yr/2 ≡ −1 mod N, go back to step 1.

7. Otherwise gcd(yr/2± 1, N) is a nontrivial factor of N.

This part thus shows how to obtain factors from periods of a suitably chosen
function.

7.3 Shor’s quantum algorithm

This probabilistic algorithm runs in polynomial time, i.e., it requires polynomial(logn)
steps. It computes the order r of a randomly chosen y with gcd(y, N) = 1 with
any prescribed probability of success 1− ε,ε > 0.

Given N take q = 2L such that N2 ≤ q < 2N2 (sometimes a q such that N5 ≤
q < 2N5 is used). Initialize two quantum registers of [logq] respectively [log N]
qubits, each in the state |0〉, i.e., initialize the quantum computer in the state

|ψ〉 = |0,0〉

and start the algorithm:

1. Apply the Hadamard gate H to each qubit in the first register to get the
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state
1
√

q

q−1

∑
a=0
|a〉|0〉.

2. Compute FN(a) = ya mod N in the second register, which gives the state

1
√

q

q−1

∑
a=0
|a〉|ya modN〉.

3. Measure the second register. It can be in a base state |k〉 where k is some
power of x mod N. Denote by A the set of all a < q such that xa mod N
equals k and denote by M the number of elements in A. Then the post-
measurement state is

|ψ〉 = 1√
M

∑
a∈A
|a,k〉.

Note that A has the representation

A = {a0, a0 + r, a0 + 2r, . . . , a0 + (M− 1)r}
with M ≈ q

r � 1. Thus the post-measurement state can be written as

|ψ〉 = 1√
M

M−1

∑
d=0
|a0 + dr,k〉.
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4. Apply the quantum Fourier transform QFTq to the first register of this
post-measurement state to get the state

1√
qM

q−1

∑
c=0

M−1

∑
d=0

e2πic(a0+dr)/q|c,k〉 =
q−1

∑
c=0

e2πica0/q√
qM

M−1

∑
d=0

ζd|c,k〉

where ζ = e2πicr/q.

5. Measure register 1. We observe register 1 to be in a particular state |c〉with
probability

Pr(c) =
1

qM

∣∣∣M−1

∑
d=0

ζd
∣∣∣2 = 1

qM

∣∣∣1− ζM

1− ζ

∣∣∣2 = 1
qM

sin2(πMcr/q)
sin2(πcr/q)

. (7.17)

If cr
q is not very ‘close’ to an integer, then powers of ζ very nearly cancel

out (‘destructive interference’) and such states |c〉 are extremely unlikely
to be observed. In this case this probability is small.

However, if for some integer d one has

cr
q
≈ d
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then ζ ≈ 1 and therefore, using periodicity of sin2(θ + kπ) = sin2(θ) for
k ∈Z

Pr(c) ≈ 1
qM

M2 =
M
q

is much larger. Hence the observed probability distribution is concen-
trated around values of c for which

c
q
≈ d

r
for some integer d . (7.18)

6. For the observed value of c one uses a classical computer to find fractions
d/r very close to c/q, expecting that this will give the true order r of x
mod N. For this one uses the method of continued fractions to compute
the convergents dj/rj to c/q, see Theorem 7.1.1.

7. Here some more details of Step 6. According to (7.17) there are exactly r
values of c mod q which satisfy

−r/2≤ rc mod q≤ r/2 (7.19)

and we wish to extract the value of r , given a value of c satisfying (7.19).
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Note that (7.19) is equivalent to∣∣ c
q
− c′

r
∣∣ ≤ 1

q
(7.20)

where c and q are known and r ≤ N, q ≥ N2.

Because of q ≤ N2, there is exactly one fraction c′/r with denominator at
most N in the range determined by (7.20). And this fraction may be found
by using the continued fraction expansion of c/q as one of its convergents
c′/q. Hence, if gcd(c′,r) = 1, we get the value of r.

Remark 7.3.1 The essential point of this period finding algorithm is the ability of a
quantum computer to be in many states simultaneously (superposition of states). This
allows to compute the period of a function F by evaluating its values simultaneously
at all points.

As we know in quantum physics we get access to this information only through
measurement. But a measurement will give only one of all possible values and de-
stroys all others. The no cloning theorem forbids to make suitable copies before the
measurement takes place. Therefore the superposition has been carefully transformed
to another state that will return the correct answer with high probability. For this
transformation the quantum Fourier transformation has been used.
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Remark 7.3.2 In order to implement the function (7.11) as a quantum transform
one uses repeated squaring for the modular exponentiation transformation. This step
is actually more difficult to implement than the quantum Fourier transform and it
requires ancillary qubits and substantially more gates to implement. This results in a
considerable slow down of the algorithm in concrete realizations.
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Chapter 8

Other important Topics

8.1 Deutsch: Universal Quantum Computer

8.2 Grover’s search algorithm for unsorted database

8.3 Quantum Error Correction

8.4 Quantum Complexity Theory

8.5 Continuous variable QKD
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8.6 Physical Implementations

8.6.1 DiVincenzo Criteria

The DiVincenzo Criteria formulate requirements for the physical implementa-
tion of quantum computing 15.

1. A scalable physical system with well characterized qubits;

2. The ability to initialize the state of the qubits to a simple fiducial state, such
as |000 · · ·〉;

3. Long relevant decoherence times, much longer than the gate operation
time;

4. A universal set of quantum gates such as single qubit rotations, C-Not C-
Phase, see earlier section;

5. A qubit-specific measurement capability;

6. The ability to interconvert stationary and flying qubits;

7. The ability faithfully to transmit flying qubits between specified locations.
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Comments about ‘long relevant decoherence times’:

Coherence times for qubits are characterized by the timescales: (1) for a change
in the probability of occupation of either qubit state; and
(2) for a randomization of the phase in superposition states.

state: |ψ〉 = α|0〉+ β|1〉
density matrix:

ρ = |ψ〉〈ψ| =
(
|α|2 αβ∗

α∗β |β|2
)

timescale T1 characterizes changes in |α|2 + |β|2;
timescale T2 characterizes changes in αβ∗ and α∗β

(loss of purity);
usually T2 < T1.

For ensemble measurements (e.g. repeated measurements with fluctuating
parameters or multiple qubits in inhomogeneous environments), the system
may appear to decohere, due to averaging on a timescale T∗2 < T2 .
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8.6.2 Possible qubits

• Neutral atoms (1 electron outside closed shell, as in Alkali atoms e.g., Rb,
Li, K, Cs,....; qubits are encoded on long-lived hyperfine states);

• Trapped ions

• Optical lattices (dipole traps for single atoms can be used to trap individ-
ual atoms for quantum computing purposes, Optical lattices allow prepa-
ration of a whole register at once, in contrast, e.g., to trapped ions);

• Colour centres (e.g., NV-centers in diamond);

• Quantum dots

• Superconducting qubits (charge, phase, flux)

• NMR (Nuclear Magnetic Resonance)

• Optical qubits

• Topological qubits
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